If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2-27=0
a = 6; b = 0; c = -27;
Δ = b2-4ac
Δ = 02-4·6·(-27)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{2}}{2*6}=\frac{0-18\sqrt{2}}{12} =-\frac{18\sqrt{2}}{12} =-\frac{3\sqrt{2}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{2}}{2*6}=\frac{0+18\sqrt{2}}{12} =\frac{18\sqrt{2}}{12} =\frac{3\sqrt{2}}{2} $
| 4x+9x=8+10x+7 | | j−11=16 | | s+21=57 | | q+71=89 | | d+1=99 | | 2x+5(x-9)=16-4(x-5) | | 1/3-8+n=-13 | | y=50(3)^X | | 15+6v=-3(v-5) | | 3(x–2)–2(x+1)=5 | | (5)/(2)-3x-5+4x=-(7)/(4) | | 2+4x=28;x= | | 7c2c−3=2(6−c)+7c | | 4X^3+x^2-13x-10=0 | | 2.6+10m=6.54 | | 10-d=-34-59 | | -54=-8p+10. | | 2(x-35)=27 | | 4+16=-2(7x-10) | | -4x=5-5x | | 21x+2(3x-7)=24x-22 | | 4k-24=2(8+7k) | | 2x+1=-15+2x | | 2(x)-35=27 | | 5(x+7)-6=5x+29 | | 2k+3(2-2k)=5(k-6) | | 8(2m+3)=-9+5m | | x=-1.4 | | 12=1-3n-1 | | 0=4.9x^2-13.56x-135 | | 56=-3x+14 | | x/3+28=118 |